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SYMBOLS

a divides b

a does not divide b

an element of G

greatest common divisor

a group

a subscript to Xi’ or just a general subscript

a subscript to Mj’ or just a general subscript

a positive integer, or a generating element of the cyclic group MN

a positive number, or the number of levels of k-apart interconnection
network

a positive integer, or the number of routing requires in a k-apart
interconnection network

modulo N

the jth memory module of an N-module array memory

a multiplicative cyclic group with N - 1 elements
number of elements in the vectors X

a positive integer, the number of memory modules in an array
memory, or the number of registers in an array register

a positive integer, or the separation distance between the ith and the
(i + 1)th elements of a p-ordered vector; p 1is also called the
skip distance

a prime number

two positive integers ©p and q to denote a pq-ordered vector; p is
the skip distance and q is the separation distance

primitive root
number of processors
order of g

transportation network
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a positive integer equal to 21

a one-dimensional vector consists of n elements

the ith element of an n-element vector X

contains in

smallest integer greater than or equal to x (ceiling of x)

smallest integer less than or equal to x (floor of x)
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NASF TRANSPOSITION NETWORK:
A COMPUTING NETWORK FOR UNSCRAMBLING p—-ORDERED VECTORS
Raymond S. Lim

Ames Research Center

SUMMARY

This paper presents a tutorial description of a transportation network
(TN) proposed by the Burroughs Corporation for the Numerical Aercdynamic Simu-
lation Facility (NASF). The description is presented from the viewpoints of
design, programming, and application. The TN is a programmable combinational
logic network that connects 521 memory modules to 512 processors, where
gcd(521,512) = 1. The primary purpose of the TN is to transpose (or unscram-
ble) p-ordered vectors to l-ordered vectors in one cycle. For unscrambling
pgq-ordered vectors, the TN speed is degenerated to several cycles. The TN
design, which is evolved from the Swanson network, is based upon the concept
of cyclic groups from abstract algebra and primitive roots and indices from
number theory. The design can be implemented by one level of barrel switch
plus a fixed wiring pattern and its inverse. The connection of this fixed
wiring pattern is from p to m according to k® = p (mod N), where k 1is a
primitive root of the prime N, m is the index of p relative to k, and p
is an element of the cyclic group of order N - 1 generated by k. The pro-
gramming of the TN is very simple, requiring only 20 bits: 10 bits for offset
control and 10 bits for barrel switch shift control. This simple control is
executed by the control unit (CU), not the processors. For this reason, any
memory access by a processor must be coordinated with the CU and wait for all
other processors to come to a synchronization point. These wait and synchro-
nization events can be a degradation in performance to a computation. The
TN application is for multidimensional data manipulation, matrix processing,
and data sorting, and can also perform a perfect shuffle. Unlike other more
complicated and powerful permutation networks, the TN cannot, if possible at
all, unscramble non-p-ordered vectors in one cycle.

I. INTRODUCTION

In the preliminary studies (refs. 1, 2), the Burroughs Corporation pro-
posed a baseline computer system for the flow model processor (FMP) of the
NASF. This proposed computer system is similar to the ILLIAC IV (ref. 3)
parallel computer except that a few innovative ideas were incorporated. One
of these innovations, the TN, is a bidirectional programmable combinational
logic network that can be used to perform conflict-free access to various
slices of multidimensional data (such as rows, columns, diagonals, and files)
and subsequent transposition of these data for processing. The end result is
that the TN provides a very simple and efficient method for the FMP to store



its data in memory and allows parallel algorithms to be executed at a rate
matched to the array processor rate.

The TN is one method of solving the traditional memory-processor connec-—
tion problem in parallel array processors, but there are others (refs. 4
through 7). The tradeoffs in the design of memory-processor connection net-
works are basically complexity versus flexibility. A full crossbar switch,
which is very complex and costly, can unscramble any data permutation and thus
allow the system to store data without regard to subsequent unscrambling
requirements. The TN, which is a low-cost and simple network, cannot unscram-
ble every data permutation in one cycle. Therefore, because several cycles
are needed to unscramble the data, certain data storage allocations can result

in processing delay.

In the FMP, the TN connects an array of N = 521 memory modules, called
the extended memory (EM), to an array of R = 512 processors, where N is
selected as the smallest prime number greater than R. This memory-processor
connection is shown in figure 1, which is a block diagram of the FMP. For
certain types of data storage allocations in memory, such as the IBM FORTRAN IV
method that requires that multidimensional data be stored in column major
order, p-ordered vectors arise naturally from these storage allocations. A
p-ordered vector, as defined by Swanson (ref. 8), is an n-element vector in
which the (i + 1)th element is spaced p positions to the right of the
ith element modulo N. The primary purpose of the TN is to transpose (or
unscramble) p-ordered vectors to l-ordered vectors in one network cycle. For
unscrambling quasi-p-ordered vectors (called pg-ordered vectors), the TN
speed is degenerated to several network cycles.
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Figure 1.~ Block diagram of FMP showing memory-processor
connection using TN.
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The design concept of TN is based upon Swanson's paper (ref. 8) concerning
the use of k—apart interconnection networks to unscramble p-ordered vectors.
In his paper, Swanson shows that a p-ordered vector can be unscrambled to a
l-ordered vector by using a k-apart network requiring m < N - 2 routings if
k 1is a primitive root of the prime N, m 1is the index of p relative to k,
and p 1is an element of the cyclic group generated by k. G. Barnes of
the Burroughs Corporation (ref. 1) observed that these N - 2 routings can be
reduced to L = LogyoN routings by using L levels of kv—apart networks
where v = 2% and i = 0,1,2, . . ., L — 1. Furthermore, he observed that these
L networks can be implemented by one level of barrel switch plus a fixed
wiring pattern and its inverse. The connection of this fixed wiring pattern
is from p to m according to k" = p (mod N). The result is a very high-
speed and low-cost TN, but with limited performance when compared to any other
permutation networks presently known. The programming of the TN is simple,
requiring only 20 bits: 10 bits for offset control and 10 bits for barrel
switch shift control.

In this paper, a tutorial description of the TN is presented from the
viewpoints of design, programming, and application in seven sections. Sec-
tion II gives a brief description of the TN in the FMP and a description of
p-ordered and pg-ordered vectors. Section III reviews cyclic groups from
abstract algebra and primitive roots and indices from number theory. Sec-
tion IV gives a summary of Swanson's paper. Section V describes the TN design
using LogyN k-apart interconnection networks. Section VI describes the TN
design using one level of barrel switch. Finally, section VII describes TN
programming and application.

II. p AND pq-ORDERED VECTORS

This section begins with a brief description of the TN and the FMP, and
then shows how two- and three-dimensional data might be stored in such an
architecture. There are many methods for storing data in multimodule memory
systems (refs. 9 through 11). In this paper, only the FORTRAN column major
order method is of interest because the FMP will use an extended FORTRAN as
its high-level programming language. For the column major order method, it
will be seen that p-ordered and pg-ordered vectors arise naturally from the
FMP storage structure. The definition of p-ordered and pg-ordered vectors
depends on the number of memory modules, and it is found that there are some
advantages in storing data and unscrambling fetched vectors when the number
of memory modules is restricted to be a prime numbher.

The FMP block diagram is shown in figure 1. This FMP architecture is
similar to the ILLIAC IV except that a TN is used to connect 521 memory mod-
ules to 512 processors. The exact interconnection pattern is programmable and
is controlled by the CU. There are no connections among the 512 processors,
and any data exchanges between processors must be done by way of the EM using
the TN. Once the CU sets up a particular interconnection pattern in the TN, a
single read (or write) instruction by each processor will fetch (or store) a
word from (to) its comnected EM module. The net result is that a vector of



data can be fetched (or stored) in one memory access. The fetched vector from
EM, prior to the TN unscramble, can be a p-ordered, a pg-ordered, or any per-
muted vector. In the following, the concept and the definition of p-ordered
and pg-ordered vectors are described. Instead of using R = 512 and N = 521
for the description, a simpler model consists of R =8 and N = 11 will be
used. Note that 11 is the smallest prime number greater than 8.

Let X = (Xg X3 X0 . . . ZXp-p X5-7) be a one-dimensional vector, or
simply just a vector, with n elements. Let X;, i =0,1,2, . . ., n-1
denote the ith element of X. 1In a computer, X is normally stored in
N registers. 1In this case, one can say that associated with Xi is a posi-
tion number j, j = 0,1,2, . . ., N~ 1, where N2 n. For N = n, Xi is
assigned as follows:

j: 0 1 2 3 4 ... N-2 N-1

Xi: X0X1X2X3X;+...X X

Swanson defines a p-ordered vector X as an n-element vector, where
Xj41 1s spaced (or skipped) p positions to the right of Xj modulo N. 1In
this paper, p is called the gkip distance of X. 1In view of this definition,
the above assignment of X; to j 1is a l-ordered vector because Xi4; is
spaced one position to the right of X3 modulo N. Other examples of
p-ordered vectors are illustrated below:

Example 2-1. N = 11, n = 11, p = 3, offset = O

j: 0 1 2 3 4 5 6 7 3 9 10
X,: Xo Xy Xg Xj X5 Xg Xp Xg X10 X3 X7

Example 2-2. N =11, n = 8, p = 5, offset = 2, * = don't care
j¢: 01 234 5 6 78 9 10

X:X4X2X07“'X7X5X3X1**X6

In the two examples above, the offset is defined as the location of the
first element (X3) of the n-element vector with respect to the first position
of the register (or memory module) array. With these examples, Swanson's
definition (ref. 8, p. 1107) for a p-ordered vector can be stated.

Definition: Let j =0,1,2, . . ., N-1, p=1,2,3, . . ., N-1,
i=20,1,2, .. ., n~-1, N2 n, and offset = 0. An
n-element vector X 1is p-ordered if the positions j of
its elements Xi are described by

pi (mod N) = j (2-1)
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From linear congruence in number theory, equation (2-1) can be written as
pi = j (mod N) (2-2)

and there exists a unique solution for the unknown i for all values of j

if and only if p is relatively prime to N (ref. 12, p. 84). Note that if
N is prime, then all p-ordered vectors can be defined for

p=1,2, .. ., N- 1. In the FMP, there are 512 processors. Therefore, the
number of EM modules N is selected to be 521, which is the smallest prime
number greater than 512. As a result, there is more flexibility in the manner

in which the data can be stored, since all p-ordered vectors can be
unscrambled.

Now that a p-ordered vector is defined, let's examine how p-ordered vec-
tors arise naturally from data stored in memory modules. Consider the storage
of the 4 x 4 x 4 three-dimensional data set of figure 2 in N = 11 memory
modules, as shown in figure 3. 1In figure 2, an element in a plane, say
anr31, is simply written as 231. 1In figure 3, M: 1is used to denote the memory

modules for j = 0,1,2, . . ., 10, and i 1is uSed to denote the memory
address within a module. Also, assume that the computer system has eight pro-
cessors and all are assigned to compute on this data set. The memory access-

ing requirement by each processor will be described later in section VII,
whereas in this section, only the illustration of p-ordered and pg-ordered
vectors (as defined later) is of interest.

The natural formation of p-ordered vectors can be seen when the proces-
sors are computing in the k direction. In this direction, data from the
IJ planes, one plane at a time, are required. As can be seen from figures 2
and 3, the fetching of any column or any two consecutive columns i and i + 1
are l-ordered vectors with different offsets with respect to My, the first
memory module. This is the case because the data are stored in column major
order. As an example, the fetched vector consisting of columns 3 and 4 from

0 111 211 311 411 121 221 321 421 131 231 331

1 431 141 241 341 441 112 212 312 412 122 222

[11a 124 134 144

2 14
I‘I13 123 133 143 244 2 322 422 132 232 33 432 2 242 342 442 113
112 122 132 142 243 | 344 3 213 313 413 123 223 323 423 133 233 333 433
1 4] 1M1 121 131 141 | 242 | 343 | 444 PLANE 4 4 143 243 343 443 114 214 314 414 124 224 324
s|2n 221 23 241 | 342 4484 o Nes 5| 424 134 234 330 434 144 204 394 4m
2| 31 321 331 341 442
1 a1 421 431 am PLANE 2 i Col j d
S PLANE T //,K Figure 3.~ Column major or ér storage
of a 4 x 4 x 4 data set in
- .
11 memory modules, M5 is memory
Figure 2.- A 4 x 4 x 4 three- module number and 1 1is a location
dimensional data set. within a memory module.



plane 1 is a l-ordered vector with offset = 8 (the leading element is 131) and
is shown below:

Mj: 0 1 2 3 4 5 6 7 8 9 10
Xi: 431 141 241 341 441 * % % 131 231 331

The fetched vector of any row in any plane is a 4-ordered vector because
the number of elements in a column is four, which is the separation distance
of the row elements in a column major order storage. As an example, the
fetched vector of row 2 in plane 1 is a 4-ordered vector with offset = 1 (the

leading element is 211) as shown below:

Mj: 0 1 2 3 4 5 6 7 8 9 10
Xi: * 211 241 * * 221 * * * 231 * row 2
* 121 * * * 131 * * row 1

X,: 111 141 *
i

However, if an attempt is made to fetch both rows 1 and 2 from plane 1 simul-
taneously, there is a memory access conflict in memory module M; because
elements 211 and 141 are both stored in M;. In this case, the row vector
consisting of rows 1 and 2 must be formed by two memory fetches through the TN.
In general, memory access conflict exists if the memory module address of two
elements is equal. Section VII gives equations for calculating element
addresses in a three-dimensional data set and also describes how the skip
distance p can be calculated.

The concept of a pg-ordered vector is derived from the concept of a
p-ordered vector. The natural formation of pg~ordered vectors can be seen
when the processors are computing in the J direction. In this direction,
data from the IK planes, one plane at a time, are required. Referring to -
figures 2 and 3, the fetched vector consists of column 3 = (142 242 342 442)
and column 4 = (141 241 341 441)T in plane 4 is a pg-ordered vector with
p=1, g =2, and offset = 6, as shown below. Also shown below is a
pg-ordered vector with p = 7 and q = 5.

M: 0 1 2 3 4 5 6 7 8 9 10 p q
X;: % 141 241 341 441 % 142 242 342 442 x 1 2

Xi: 431 422 * 411 441 432 * 421 412 442 * 7 5

This vector is a result of fetching column 1 = (441 431 421 411)T and

column 2 = (442 432 422 412)T from plane 1 when computing in the I direc-
tion. For unscrambling pg-ordered vectors, the TN cannot perform the task in
one cycle. In the above examples, two memory fetches and unscramblings are
required. In general, the total number of memory fetches and unscramblings
is equal to the number of groups within the vector X. Each group within X
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is a p-ordered vector, and the separation distance between groups is q. For
this reason, pg-ordered vector fetching sometimes is called periodic fetching
by groups.

- The concept and natural formation of p-ordered and pg-ordered vectors
have been presented in this section. The 4 x 4 x 4 three-dimensional data
set in figure 2 and its memory module storage allocation scheme shown in
figure 3 are only for illustrative purposes. In actual practice, the data
set and the storage allocation scheme may be different. The purpose here is
to conjecture that the TN, as described later in the design sections, can be
used to unscramble a p-ordered vector to a l-ordered vector in one cycle and
to unscramble a pg-ordered vector to a l-ordered vector in several cycles.
The exact number of cycles is dependent on such factors as data storage allo-
cation schemes, memory access conflicts, and the number of periodic groups
within a vector.

IITI. CYCLIC GROUPS, PRIMITIVE ROOTS, AND INDICES

In the design of the TN, the concept of cyclic groups, primitive roots,
and indices are used. For this reason, a brief review of these concepts
necessary to understand the TN design is presented. In summary, a primitive
root in number theory is a special case of a generator of a cyclic group in
abstract algebra. The theory of primitive roots and indices can be used to
solve certain types of congruence equations in number theory. The reader, if
so desired, can skip this section and proceed to the next section where the
description of the Swanson network is presented.

Cyclic Groups

From abstract algebra, a set is a collection of elements with some com-
mon properties that can be used to determine whether an element does or does
not belong to the set. A group G 1is a nonempty set of elements and a binary
operation on the set (i.e., the set is closed under the group operation) such
that the operation is associative, there is a unique identity element for the
operation, and each element has an inverse element for the operation. If the
operation is commutative, then G 1s called a commutative (or abelian) group.
If the number of elements in G is finite, then G 1is called a finite group.
Otherwise, G 1is called an infinite group. The number of elements contained
in G 1is called the order of G. The binary operation of G 1is often
written as multiplication. If the operation is written as multiplication,
then G is called a multiplicative group. In the design of the TN, only
finite multiplicative groups will be used.

Let g be an element of G and e be the identity element of G. The
order of g 1is the smallest positive integer t such that gt = e. Note
that if G is finite, every element g has an order and the order of g
divides the order of G.




A group G is called cyclic if it contains an element g such that
every element h of G can be expressed as

h =gt (3-1)

for some integral exponent ¢, positive, negative, or zero. Such an element
g of a cyclic group G 1is called a generator of G. Note that g is a
generator of G (and G 1is cyclic) if and only if the order of g is equal
to the order of G. If G has N - 1 elements generated by g modulor N,
then the generator g 1is called a primitive element of G, or a primitive
generator. The following examples will illustrate the concept.

Example 3-1. The number 3 is a generator of the cyclic group
G=(,2,3,4,5,6) under multiplication modulo 7, since
31 =3, 32=2,3 =96, 3% =4, 3 =5,3 =1

Example 3-2. The number 2 is a generator of the cyclic group
G = (1,2,3,4,5,6,7,8,9,10) under multiplication modulo 11,
2, 22 = 4, 23 =8, 2% =5, 25 = 10, 26 = 9,
=3, 2%=6, 210 =1

since 2! =
27 = 7, 28

Example 3-3. The number 4 is a generator of the cyclic group
G = (1,2,4) under multiplication modulo 7, since
4l = 4, 42 =2, by =1

Let N be a positive integer and let My consist of all the positive
integers that are less than N and relatively prime to N. Then My forms
a group under the binary operation multiplication modulo N. If N is
prime, then My contains all the integers from 1 to N - 1 and, therefore,
has order N - 1. Furthermore, if N dis prime, My 1is cyclic and thus has
at least one generator. In the above two examples, M; and Mj;; are two such
cyclic groups generated by 3 and 2, respectively. In the TN design, N is
chosen to be 521 and 3 (the smallest positive integer generating Msgp; and
also a primitive root of 521 as defined later) is chosen as the primitive
generator to generate all the integers from 1 to 520 modulo 521. This is to
ensure that all p-ordered vectors, for p = 1,2, . . ., 520, can be unscram-
bled in one cycle. The design of the Swanson network is based upon the con-
cept of cyclic groups and linear congruences as described later.

Primitive Roots

The concept of primitive roots is a special case of the concept of cyclic
group generators. Let a group G have N - 1 elements. If g of G is a
primitive generator, then g 1is a primitive root of N. As previously
described, the discussion of cyclic groups is a topic in group theory in
abstract algebra (refs. 13 and 14), whereas the discussion of primitive roots
is a topic in number theory (refs. 12, 15, and 16). A generator in G is
one that generates a cyclic group (or subgroup) of G. The generator that
generates a cyclic group of order N - 1 modulo N 1is called a primitive ele-
ment (or primitive root) of G. Thus, primitive generators and primitive



roots are the same. 1In this section, the concept of primitive roots from
number theory is briefly reviewed, starting with Euler's theorem.

In number theory (refs. 12, 15, and 16), Euler's phi-function ¢(N), for
N = 1, denotes the number of positive integers not exceeding N that are
relatively prime to N. If N is a prime number, then every positive integer
less than N is relatively prime to it; whence ¢(N) = N - 1. On the other
hand, if N > 1 4is composite, then N has a divisor d such that 1 < d < N.
It follows that there are at least two integers among 1,2,3, . . ., N that
are not relatively prime to N, namely, d and N itself. As a result,
$(N) < N - 2. This proves: for N > 1,

p(N) = N- 1 if and only if N is prime (3-2)

If N dis not prime, the value of ¢(N) can be obtained either analyti-
cally or by table lookup (ref. 17). 1In reference 17 (pp. 840 to 843), ¢(N)
is listed for N ranging from 1 to 1000. One useful property of ¢(N) is
given below without proof.

Euler's theorem: If a and N are positive integers and gcd (a, N) = 1,
then a¢(N) = 1 modulo N.
In view of Euler's theorem, it is known that a®®M = 1 modulo N whenever
ged (@, N) = 1. However, there are often powers of a smaller than a%(N)

that are congruent to 1 modulo N. This leads to the definition of the order
of «a modulo N (in older terminology: the exponent to which a belongs
modulo N):

Order definition: Let N > 1 and gcd (@, N) = 1. The order of
a modulo N is the smallest positive integer k
such that aK = 1 modulo N.

As an example, comnsider the successive powers of 2 modulo 7 as follows:
2l =2, 22 =24, 23 =1, 2% =2, 25 =4, 206 :=1,,
from which it follows that the integer 2 has order 3 modulo 7. This example

also shows that 2K = 1 modulo 7 whenever k is a multiple of 3. This leads
to a theorem for finding the order of an integer a.

Order theorem: Let the positive integer a have order k modulo N.
Let h > k, then ab = 1 modulo N if and only if k
divides hj; in particular, k divides ¢(N).

This theorem expedites the computation of the order of an integer a modulo N.
Instead of considering all powers of a, the exponents can be restricted to
the divisors of ¢(N).

The order theorem will lead directly into the definition of primitive
roots. Note that the order k of an integer « modulo N 1is necessarily a
divisor of ¢(N). The largest of these divisors is ¢ (N) itself. TIntegers



of order ¢(N) modulo N are called primitive roots of N. Note that in
general there may be no primitive roots of N. However, in the case that N
is a prime, primitive roots of N always exist. The formal definition of
primitive root is stated as follows:

Primitive root definition: If gcd (@, N) =1 and a is of order ¢(N)
modulo N, then a 1is a primitive root of N.

In other words, N has a as a primitive root if a?®M) = 1 modulo N, but

ak £ 1 modulo N for all positive integers k < ¢(N). Thus, a primitive root
of the positive integer N 1is an integer that has the largest possible order.
This means that the powers of a primitive root modulo N will generate all
the integers not exceeding N. From this analysis, it can be seen that primi-
tive roots are a special case of generators (primitive) of cyclic groups. As
indicated earlier in example 3-2 (cyclic groups), 2 is a primitive generator
for the cyclic group G = (1,2,3,4,5,6,7,8,9,10) modulo 11. In number theory,
2 is a primitive root of 11 because ¢(11) = 10, 210 = 1 modulo 11, ok £ 1
modulo 11 for k < 10, and thus the powers of 2 generate all the elements

of G.

In the study of number theory today, it is not known whether or not there
exist primitive roots for all integers. However, it is known that a positive
integer N has primitive roots if and only if N is 2,4, a power of an odd
prime, or twice a power of an odd prime. Also, there is no known simple and
efficient algorithm to find the primitive roots other than by the use of the
definition. In general, if a is a primitive root of N, then any other
primitive root of N 1is found among the member of the set
(a,a?, . . . a®(M)). It is known, however, that primitive roots do exist,
the exact number of primitive roots are given by the following theorems,
starting with the congruence theorem first,

Congruence theorem: Let gcd (a, N) = 1 and let aj,dp, . . . a )
be the positive integers less than N and ¢
relatively prime to N. If g 1is a primitive

root of N, then a,az, . e ey a® are con-

gruent modulo N to aj,ds, . . .,u in some
¢ (N)

order.

The congruence theorem leads immediately to the next two theorems.

Primitive root theorem: If N has a primitive root, then it has
exactly ¢[¢(N)] of them.

Prime primitive root theorem: If N 1is a prime, then there are exactly
¢(N - 1) incongruent primitive roots of

N.

The above theorems will be illustrated by two examples.

10



Example 3-4. Let N = 11. There are exactly ¢(10) = 4 primitive roots
of 11. The smallest primitive root of 11 is 2 (by table
lookup). The other three primitive roots of 11 must be
among the member of the set 2%, i = 1,2, . . ., 10 modulo 1l
as shown below:

1l
(%]
-
N
€]
1]
[
o

2! 22 = 4, 23 =8, 2%

"l
N
-

26 =z 9, 27 =7, 28 =3, 29:= 210 = 1

t
1]
il

t
(=)}
-

By tedious calculation, these three primitive roots of 11
are 6, 7, and 8. The 10 powers of the primitive root 2
presented above formed the cyclic group M;; and there-
fore are congruent in some order to the ¢(11) numbers in
the set (1,2,3, . . ., 10).

Example 3-5, Let N = 9, which is not a prime number. There are exactly
$(d(9)) = ¢$(6) = 2 primitive roots of 9. The smallest
primitive root of 9 is 2 (by table lookup). The other
primitive root can be found among the six powers of
2 modulo 9 as shown below:

2l =2, 22 z4, 23=z8, 2% =7, 2%5=5 26=1

By tedious calculation, this primitive root of 9 is 5.
Now the integers less than and relatively prime to 9 are
1, 2, 4, 5, 7, and 8, and these numbers are congruent in
some order to the six powers of 2 presented above.

In the TN design, a prime number N = 521 is selected. There are
$(520) = 192 primitive roots to choose from as a primitive generator to gen-
erate the cyclic group Msp; = (1,2, . . ., 520). 1In practice, the smallest
primitive root is selected as the generator. For N = 521, 3 is the smallest
primitive root. Tables of the smallest primitive root r of the prime
number p can be found in references 12 and 17. In reference 12 (p. 327),

r is given for 2 < p < 1000. 1In reference 17 (pp. 864 to 869), r is given
for 3 < p < 9973. Other than these tables, there are no known algorithms
today, for example, to find the 192 primitive roots of N = 521 other than
essentially using the stated definition. It is to be noted, however, that

2 is not a primitive root of N = 521 because 2260 = 1 modulo 521, which
violates the primitive root definition, since 260 < ¢(521) = 520. A method
of calculating 2260, an old and undocumented method in number theory, is
shown in appendix A. As will be described later, this method also will be
used as the first high-speed implementation method of the Swanson network.

Theory of Indices
The theory of indices is an old and neglected topic in number theory. It

is analogous to that of logarithms, where the primitive root plays the part
similar to that of a base of a logarithm. The major difference is that

11



indices are computed using the theory of congruences. In the TN design, the
barrel switch implementation of the Swanson network can be described most
simply by using the theory of indices.

Let N be a positive integer. Two integers «a and b are said to be
congruence modulo N, symbolized by

a = b (mod N) (3-3)

if N divides the difference a - b. Let r be the primitive root of N.
From the congruence theorem, the first ¢(N) powers of r,

r,r?, 4 ()

are congruent modulo N, in some order, to those integers less than N and
relatively prime to it. Hence, if a 1is an arbitrary integer relatively
prime to N, then @ can be expressed in the form

a = rk (mod N) (3-4)

for a suitable choice of k, where 1 < k < ¢(N). The exponent k 1is called
the index of a relative to r, and this leads to the formal definition on

the concept of index.

Index definition: Let r be a primitive root of N. If ged (a,N) =1,
then the smallest positive integer k such that

@ = r¥K modulo N is called the index of a relative
to r.

The standard notation for the index of a relative to r is indya or, if
no confusion is likely to occur, ind a is used. Clearly, 1 < indra < ¢ (N)
and

indra

T = a (mod N) (3-5)

Note that the definition of index is meaningless unless gecd (a,N) = 1.
The following example will illustrate the concept of index.

Example 3-6. The integer 2 is a primitive root of 11 and the 10 powers
of 2 are listed in example 3-4. From this list a table
of indices can be prepared as follows:

a J12345678910
indza’lolszz{; 7‘—3~65
It follows that
ind,1 = 10, indy2 =1, . . ., indy10 = 5

12
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With indices, as with logarithms, multiplication, division, evolution,
and involution are replaced by addition, subtraction, multiplication, and
division, respectively. These concepts are summarized in the following the-
orem without proof.

Index theorem 1: If N has a primitive root r and ind a denotes the
index of a relative to ¥, then

(1) ind (ab) ind a + ind b modulo ¢(N)

(2) ind ak = k ind a modulo ¢(N) for k > 0
(3) ind 1 = 0 modulo ¢(N), ind r = 1 modulo ¢(N)

The theory of indices can be used to solve certain types of congruences.
For example, consider the binomial congruence

K = ¢ modulo N, k=2 (3-6)

X
where X is the unknown, ¢ is an integer with gecd(a,N) = 1, and assume N
has r as a primitive root. By property (2) of index theorem 1, this con-
gruence is equivalent to the linear congruence

k ind X = ind a modulo $(N)

If d = ged (k,¢(N)) and d x ind a, there is no solution. But if d | ind a,

then there are exactly d incongruent solutions. This leads to the following
two theorems.

Index theorem 2: Let N be an integer with primitive root r and
ged (a,N) = 1. Then the congruence X" Z g modulo N
has a solution if and only if

a¢(N)/d = 1 modulo N

where d = gcd (k,¢(N)); if it has a solution, there are
exactly d solutions modulo N.

Index theorem 3: Let N be a prime and gcd (a,N) = 1. Then the con-
gruence XK = @ modulo N has a solution if and only if

a(N_l)/d = 1 modulo N

where d = ged (k,N - 1).

To conclude this section, two examples are given below to illustrate
these concepts.

13



Example 3-7.

Example 3-8.

14

Solve the binomial congruence
7%3 = 3 (mod 11)

A table of indices using the primitive root
presented in example 3-6. The gecd (k,$(N)) ged

(3,10) = 1, and 1 divides indja = ind;3 = 8. So there is
exactly one solution. This solution is found as follows:

r =2 is

ind,7 4+ 3 ind,X = indy3 (mod 10)

Hl

7 + 3 indyX 8 (mod 10)

1 (mod 10)

3 ind2X

X must be found by direct computation. By

At this point
direct substitution of indyX, for X =1,2,3, . . ., 10
= is satisfied. Thus

into the last congruence, only X = 7
X =7 1is the solution.
Solve the binomial congruence

3X% = 9 (mod 11)

The
two solutions.

ged = d = (4,10) = 2 and d|ind,9 = 6, so there are

Now,

indy3 + 4 indyX = ind,9 (mod 10)

8 + 4 ind,X = 6 (mod 10)
4 ind,X = -2 (mod 10)
=8 (mod 10)
Since ged (4,8,10) = 2, then
2 ind,X = 4 (mod 5)
Since ged (2,5) = 1, then
ind,X = 2 (mod 5)
or
indyX = 2,7 (mod 5)
The solutions are X = 4 and 7.



IV. SWANSON NETWORK

The Swanson network (ref. 8) is a simple interconnection network that can
be used to unscramble p-ordered vectors. Its design is based on a so-called
k-apart interconnection network where k 1is a primitive root of N, and N
is the number of memory modules or the number of registers in a register array,
depending on the context of the description. Because of its simplicity, the
Swanson network requires m iterative routings to unscramble a p-ordered
vector. The value m is related to k and p by k® = p (mod N). If N is
prime, then at most m = N - 2 routings are required.

Let the n-element vector X, after it is fetched from a memory system
consisting of N modules, be stored in N registers, where obviously

n < N. Let the elements of X be X3, 1=0,1,2, . . ., n~-1. Let j be
the positional index of N, and j = 0,1,2, . . ., N - 1. The vector X is
p-ordered if the positions of its elements X; are described by

pi=j (mod N) (4-1)

Equation (4-1) is the same as equation (2-2) as described previously in
section II. A 5-ordered vector for n = 8 and N = 11 is shown in figure 4(a).
From this definition of p-ordered vector, it is known from number theory that
the linear congruence in equation (4-1) has a unique solution for i if and
only if ged (p,N) = 1, and the equation can be solved by the theory of primi-
tive roots and indices. For this reason, Swanson proposed an interconnection
called a k-apart interconnection network and is defined as follows:

Definition. N registers are interconnected with a k-apart interconnec-—
tion, k = 1,2, . . ., N - 1, if the content of register kj
(mod N) can be transferred directly to register j. The
notation for such an interconnection is

Reg (kj mod N) - Reg (j) (4-2)

10 The problem confronted now is to

5 6
- = 1 : .
) @ d_ﬂ |33:| [i:l [,:,] I:@ Az dete.err?lr'le the value of k. As with the
definition of p-ordered vectors, k
8 ELEMENT 5.ORDERED VECTOR IN REGISITERS must be restricted to be relatively

® [0 BHEEEHEBE@GE & prime to N so that all p-ordered vec-

tors can be unscrambled in, say, m

AFTER FIRST ROUTING

routings. When a vector contained in
© @ @6 60 A E [ & EE the registers is to be routed along the

interconnection paths, all registers
o [0 [6] [ G E MMEEE transfer their content simultaneously.

AFTER SECOND ROUTING

AFTER THIRD ROUTING If the registers contain a p-ordered
® o 2 3 6 E E HEH @ vector with p = k, then one transfer
AFTER FOURTH ROUTING is sufficient to unscramble the vector

to a l-ordered vector. 1In order to
meet these requirements, k is necessar-
ily a primitive root of N as will be

Figure 4.- Unscrambling a 5-ordered
vector with a 2-apart intercon-
nection of 11 registers.
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described later. With this information, an interconnection network for N = 11
can be constructed using k = 2 since 2 is a primitive root of 11. TFrom
equation (4-2), the calculation for the connections is shown in table 1, and
the physical connections are shown in figure 4(a). The unscrambling of a
5-ordered vector requires m = 4 routings, and this is calculated from

TABLE 1.- INTERCONNECTION FOR m _ _
2-APART NETWORK (MOD 11) 27 =5 (mod 11) m=4

>

] , . The step-by-step process of this

J ZJ~E??§A}1)A_ ) Qg?nectlon unscrambling is shown in figure 4. It

0 vb 0+ 0 is interesting to note how p changes

1 9 2 51 after each routing. Since it requires

5 4 L > 9 a total of four routings, the progres-

3 6 6 = 3 sion of p with respect to m is

4 8 8 »~ 4

5 10 10 » 5 m=0 1 2 3 4

6 1 1+6 (4-3)

7 3 3 57 p=5 8 4 2 1

8 5 58 . . .

9 7 7 59 which is a progression of the powers of

10 9 9 > 10 k = 2. After the (m ~ 1)th routing,
L. __J1 the vector always reduces to k-ordered;

thus, a p-ordered vector, with p = k,
can be unscrambled in one more routing.

From the discussions of p-ordered vectors in section II and cyclic groups
in section III, N 1is necessarily a prime so that all p-ordered vectors, for
p=1,2,3, .. ., N-1, can pve unscrambled. Since k is a primitive root of
N, then the interconnections generated by equation (4-2) are a cyclic group
My of order N - 1. The resultant interconnection will unscramble any
p-ordered vector in m routings according to

k™ = p (mod N) (4=4)
With these discussions, a theorem can now be formulated.

Swanson theorem: If N registers are interconnected with a k-apart
interconnection K € My, then a p-ordered vector,

p € My, contained in these registers can be converted
to a l-ordered vector if and only if p dis an element
of the cyclic group My 8enerated by k.

The proof of this theorem is simply the fact that after m routings through
the network, the contents of the registers are given by

Reg [3] = (p7k™) j (mod N) (4-5)
for j=10,1,2, . . ., N-1 and p_1 is the multiplicative inverse of

p modulo N. In order for the vector to become l-ordered after some number of
routings, m from equation (4-5) must satisfy

16



Reg [j] = 3 = (p™1K™ j (mod N) (4-6)

A value for m satisfies this equation for all values of j 1if and only if
m satisfies

p"lkm = 1 (mod N) (4-7)

or

K™ = p (mod N) (4-8)

From this, it is clear that the p-ordered vector can be unscrambled if and
only if p 1is an element of the cyclic group My generated by k. Further-
more, k must necessarily be a primitive root of N so that all values of p,
for p=1,2, . . ., N~ 1, can be generated by equation (4-8). For an arbi-
trary value of p between 1 and N - 1, the maximum value of m in equa-
tion (4-8) is N - 2, which is the maximum number of routings required to
unscramble a p-ordered vector. As an example (IN case), let N = 521 and

k = 3, then 3°!9 = 174 (mod 521).

In summary, it can be seen from the theorem that if N is a prime and
k is a primitive root of N, then My generated by k 1is a cyclic group.
The order of My is N - 1l and the elements are 1,2, . . ., N - 1. All
p-ordered vectors, for p = 1,2, . . ., N ~ 1, can be unscrambled to a
l-ordered vector by a single k-apart interconnection network. This unscram-
bling process is effected by routing the elements of the vector through the
network m times (see, e.g., fig. 4) according to

km

It

p (mod N) (4-9)

The maximum number of routings is m = N - 2. After the (m - 1)th routing,
the vector always reduces to k-ordered so that the vector can be reduced to

a l-ordered vector after the mth routing. Prior to the mth routing, the
reduction of p after each routing is progressing in the powers of k (see,
e.g., eq. (4-3)).

V. TRANSPOSITION NETWORK DESIGN: k-APART NETWORK IMPLEMENTATION

As described in section IV, the Swanson k-apart network can be used to
unscramble an n-element p-ordered vector stored in N registers n < N, with
a maximum of N - 2 routings. If N is large, like 521 in the FMP, then the
unscrambling can be a long delay. To overcome this problem, several k-apart
networks can be connected in series to perform the N - 2 routings in the
progression of the powers of k as suggested in equation (4-3). 1In electri-
cal engineering this technique is called logarithmic compression, which is
similar to the technique of computing N in 2log,(k + 1) steps as shown in
appendix A. 1In the sequel, it will be shown that the N - 2 routings can be
reduced to L = logoN routings by using L kV-apart networks, where v = 21
for i=20,1,2, . . ., L - 1.
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Let the integer N be represented by an L-bit binary number. At most,
when N is at its maximum value, N is
N=2L"1 4 | 42l 420=02L_1 (5-1)
or
N-2=2L_-3 (5-2)
This gives
L = log, (N + 1)
n N
=riog2ﬁ1 = {é;—%} for N >> 1 (5-3)

for N =521, L = 10, and for N = 11, L = 4,
gested that the N - 2
using L k-apart networks connected in series in
the network will perform either a straight-through

a routing by the amount equal to

routings can be reduced to

kV (mod N), where

In equation (5-3), it is sug-

L = logyoN routings by

L 1levels. At level 1,

connection (no routing) or
v = 21 for

i=20,1,2, ., L - 1. The selection either "to route" or "straight
through" is controlled by the binary bit 21 of m, where m is calculated
as
KT = p (mod N) (5-4)
Let U(x) denote the k-apart network at level i for i = 0,1, . . .,
L - 1. Then the L 1levels of networks are as follows:
0
U(x) = k2 (mod N) 1st level
U(x) = k2 (mod N) 2nd level
L-1
U(x) = k2 (mod N) Lth level

As an example, for N = 11, k = 2, the four levels

U(2) = 2-apart 1st
U(4) = 4-apart 2nd
U(5) = 5-apart 3rd
U(3) = 3-apart 4th

Note that the combinations of the numbers 2, 3, 4,
appropriately to form any number from 2 to 10; and
to unscramble any p-ordered vector for p = 1,2,

of networks are:

level
level
level
level

and 5 can be selected
therefore, it can be used
., 10. For the trivial

case when the vector to be unscrambled is a l-ordered vector, then all four

levels will be selected as ''straight through,'" because m
This concept of using L levels of

case, as calculated by equation (5-4).
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k-apart networks to implement the TN is shown in figure 5. The implementation
of a TN for N =11 and k = 2 is shown in figure 6 with m set to 9 for
unscrambling a 6-ordered vector, since 29 = 6 (mod 11). For the case when

N = 521 and k = 3, the 10 levels of networks are U(3), U(9), U(16), U(256),
U(411), U(117), U(143), U(130), U(228), and U(405).

VI. TRANSPOSITION NETWORK DESIGN: BARREL SWITCH IMPLEMENTATION

The implementation of the Swanson Network using L = logyN k-apart net-
works is a significant step in increasing the unscrambling speed by reducing
the number of routings m from N - 2 to logyN. The cost for this gain in
speed is the increase in hardware complexity, where the number of k-apart net-
works is increased from 1 to 1logoN. There is, however, an alternative to the
implementation. By a close inspection of the k-apart network, it can be
observed that there is a uniform shift pattern in its input to output connec-—
tions (see, e.g., fig. 6). For this reason, it is reasonable to expect that
a uniform-shift network (ref. 18), com-
monly called a barrel switch, can be
used for such an implementation. 1In

the sequel, it will be shown that a ot
single level of barrel switch, plus a 0 l’ 2 ja 4 ls 5 17 ls o lw
fixed wiring pattern connected accord-
ing to k™ = p (mod N) and its inverse, . v
can be used to replace all L = logyN Mo =
o |1 |z |3 |4 |5 |6 |7 |8 |o [0
p-ORDERED VECTOR
<——<|L\JA(4_)_0
CONTROL 17
//uSBOFM)
20
k< (MoD NI 0 % 2 {3 |4 |5 |6 |7 [8 |9 |10 ¢e—n
U(5)
|-—yg
k2" (oD N M, =0
0 ‘1 2 |3 |4 |5 |e |7 [8 |9 |0
k?* (MOD N} = M
o
. My =1
. .
i N 0 11 lz 13 14 15 16 17 ls 19 110
L1 Xo X Xp X3 X4 X5 Xg X; *1 2 =3
K2~ (MOD N) %
\\ Figure 6.- TN for N = 11 and k = 2,
(MSB OF M)

showing the unscrambling of a

1-ORDERED VECTOR .
6-ordered vector for the routing

Figure 5.~ Implementation of Swanson amount M = M3M,MiMgy = 1001, A
network using L levels of k-apart "0" means straight through and a
networks. "1" means routing.
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levels of k-apart networks. The control for the barrel switch is simple where
m simply controls the switch shift amount.

A barrel switch is a combinational logic network that can perform a uni-
form shift of an incoming vector by a fixed number of positions. The shift
direction can be either left or right with options of either end-off or end-
around., The design description of barrel switches is almost all contained in
patent literature.

In "open" literature, design descriptions are few and far between. There
are a few pages in the book by Burroughs Corporation in 1968 (ref. 19), the
Signetic 8243 8-position scalar in 1970 (ref. 20), a few pages of description
in 1970 by Davis (ref. 21), and a design note in 1972 by Lim (Ref. 22). 1In
this section, barrel switch design is not of concern, and it will be treated
simply as a uniform shift network, in particular, a left end-around uniform-

shift network.

In the description of p-ordered vectors in section II, the vector X is
p-ordered if the positions of its elements X; are described by

Xi = j = pi (mod N) (5-1)

After X 1is unscrambled by the network, the result is a l-ordered vector, or
p =1 in equation (5-1). That is,

Xi = i (mod N) (5-2)
or

Xi =i (5-3)
for i=0,1,2, . . ., n -1, and n < N. The objective of this section is to

show that a Swanson network implemented by one row of barrel switch, plus a
fixed unscrambling wiring pattern and its inverse, can be used to reduce
equation (5~1) to equation (5-3).

From the Swanson k-apart network discussion in section IV,

K" = p (mod N) (5-4)

where k 1is the primitive root of N and m is the number of routings
required to unscramble p. Combining equations (5-1) and (5-4), the result is

m

i K" = X, (mod N) (5-5)
In the description of number theory in section III, equation (5-5) is a

binomial congruence and it can be solved by the theory of indices. Taking
indices on both sides of equation (5-5), the result is
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1ndki + m indkk = indei (mod $(N)) (5-6)
or
1ndk1 = indei -m indkk (mod ¢$(N)) (5-7)
since
k™ = p (mod N)
then

m indkk = indkp (mod ¢$(N)) (5-8)

Combining equations (5-7) and (5-8), the result is

ind i = ind X, - ind p (mod ¢(N)) (5-9)

or

indki = ind, pi - ind (mod ¢ (N)) (5-10)

kP kP

Equation (5~10) is the key equation in demonstrating that the barrel
switch indeed can implement the Swanson network. The implementation of this
key equation is shown in figure 7. The explanation of figure 7 is as follows:

1. The input to the unscrambling wiring pattern W, point-A, is a
p-ordered vector Xi z pi (mod N).

2. In order to obtain X, = (indkp)i (mod $(N)) at point-B, W is wired
according to the index of »p 3f the
unscrambling equation X {p-ORDERED)

4__(:> X, = Pi (MOD N)

kM = p (mod N)
w FIXED CONNECTION ISP~ M
UNSCRAMBLING WIRING  [*—— of kM = P (MOD N)
In this equation, m = indyp; and thus, PATTERN
the wiring is from p tom for X, = findyP) i
p=20,1,2, . . ., N-1. = . (MOD ¢ (N)]
8s
3. At points B and C, the input EFTBEARc?iLnng:\uTSgHIFT) < M SRETITINES)
. . . . L ND-
of X; = indypi (mod d(N)) is shifted L(
m times left end-around by the barrel C) &ziﬁﬁﬂggkmx00¢mﬂ
switch to obtain the key equation «
w1
Xi = indki (mod ¢ (N)) {INVERSE OF W}
= indkpi - indkp (mod ¢ (N)) 1 <_{:> X, =i (MOD N}

X (1-ORDERED)

Figure 7.- Barrel switch implementation
of Swanson network according to the
key equation, equation (5-10).
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It can be shown that

= indkp (mod ¢ (N))

Note that m = indkp and left shift is minus.
m =

as follows. From
K* = p (mod N)

it follows that

m 1ndkk

or

It

m

since

indkp (mod ¢$(N))

ind, p (mod ¢(N))

indkk = 1 by property (3) of the index theorem.

4. The output at point-D is obtained by routing

X, =
i

through W-1, which is the inverse of
W. This inverse wiring pattern will

obtain i from indki, so that the
desired output of
X. = i (mod N)
i

is obtained.

To illustrate the above steps fur-
ther, an example for N = 11 and k = 2
is shown in figure 8. The wiring pat-

tern W 1is constructed according to
2™ = p (mod 11)
for p=1,2, . . ., 10. The wiring

direction is from p to m because m
is the index of p. Also shown in
figure 8 is the unscrambling of a
p-ordered vector with p = 6, the same
as in figure 6.

At this point,
out that the description of unscrambling
p-ordered vectors has assumed that the
offset is zero. That is, Xy of X |1is
always in memory module O or in regis-
ter 0. If the offset is not zero, then
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indki (mod ¢(N))

Xg Xy X4 Xg *1 #3 X; X3 Xg =X
X; = 6i (MOD 11)

0 {1

w
(FIXED WIRING
PATTERN)

0o [1 {2 |3 |4 |5 (6 |7 |8 |9 X; = ind,6i (MOD 10}

BS

j«— M =9 (SHIFT LEFT 9 TIMES
END-ARQUND)

X; = ind,i
= ind,6i - ind,6
(MOD 10)

Ww-1
(INVERSE OF W)

0 |1 X, =i(MOD 11)

a0

N
T
<T

o

it should be pointed x, X; X; X3 X, Xg Xg X; *1 *2 *3

Figure 8.- Illustration of figure 7
for N=11, k= 2, and p = 6. If
offset of X 1is not zero, X can
be preshifted by another barrel
switch prior to input of W.




a preshift of X is required. This can be accomplished by a barrel switch
prior to the input of the TN.

VII. PROGRAMMING AND APPLICATION

The programming of the TN, for either the L-level k-apart networks or the
barrel switch implementation, is identical and very simple. It involves only
two parameters: the offset and the shift amount m. These two parameters are
available from the compiler of the FMP since the compiler is responsible for
laying out the three-dimensional data set in the EM modules. The offset of a
p-ordered vector X, as described in section II, is a variable and is simply
equal to the memory module address of the first element of X. The param-
eter p 1is also a variable and is simply equal to the difference of the
memory module addresses of X, and X, of X, for i=1,2, . . ., n. Note
that the subscript 1 of X ‘hére is changed to "1 to n" because in FORTRAN
matrix, the counting starts with 1, not 0. Once p 1is known, m can be
obtained as the index of p according to K" = p (mod N).

The primary application of the TN is for unscrambling p—-ordered vectors
that arise naturally from data allocation in memory modules. The secondary
application is for data communication between processors through the EM mod-
ules, since there are no direct connections between processors of the FMP as
shown in figure 1.

In this section, the derivation of the memory module addresses and a
brief description of the TN application to unscramble three-dimensional data
sets of turbulent flows are presented. The presentation here is for illustra-
tive purposes only. 1In practice, the actual techniques used may be different.
Also, the application of the TN to perform a perfect shuffle is described
briefly without proof.

PROGRAMMING

Before proceeding with the memory module address calculation, the defini-
tions of a few notations are important. Let a three-dimensional data set be
represented by D(I,J,K), where 1I,J, and K are the maximum values in the
three dimensions. It follows that D(I) and D(I,J) are one-dimensional and
two-dimensional data sets, respectively. If the data layout method is row
major order, then I, J, and K represent the row, column, and file, respec-
tively. 1If, however, the data layout method is column major order, then I, J,
and K represent the column, row, and file, respectively. As an example, the
data set D(I,J,K) in figure 9 is D(3,5,7) for row major order and is
D(5,3,7) for column major order. In this paper, only the column major order
data layout method is of interest because of FORTRAN compatibility. For this
method, the data layout (similar to figure 3) for N = 11 memory modules is
shown in figure 10.



7 12 3 Let (i,j,k) denote the memory
e 1% 1) module address of an element in
| (COLUMN MAJOR) 236 | 437 D(I,J,K). It follows that A, (i) and
J (ROW MAJOR) 125 135( 3361 537 . . M
] 28 436 7 Ay(i,j) are memory modul? addresses for
gﬁ 335 6 D(I) and D(I,J), respectively. In
a3a|lg figure 10, the element 111 is the very
— urlz 22| 4z 5341, ///,K first e%ement of D(I,J,K), and it i?
211 221 231 235 3 stored in memory module Mg. For this
P mlss2], reason, the starting address offset
511 521 531 Ay, in this case, is 8. The address
B et offset A, sometimes, is also called
the base address. If the element 111
Figure 9.- A three-dimensional data 1is stored in M, then A = 0. It
set: for row major, should be noted that the offset Agy
p(1,J3,K) = D(3,5,7), for column should not be confused with the offset
major, D(I,J,K) = D(5,3,7). of a p-ordered vector, which is equal
to (i,j,k) of the first element in a
vector. In the sequel, the address
M 0 1 2 3 4 5 6 7 8 9 10 (i,j,k) will be derived systemati-
' cally, starting with the one-dimensional
; ot o1 é1 £1 21 4 £11§ ;; gg i; data set D(I), and figures 9 and 10
f| st ooogmoawoow mom w9 will be used as references.
4 223 323 423 523 133 233 333 433 533 114 214
5 314 414 514 124 224 324 424 524 134 234 334 . .
6] 434 534 115 215 315 415 515 125 2256 325 425 Let a one-dimensional array, or
©| 2 2 sz az s 1s 23 s 4se sk 1y vector, X have elements X, for
18 gg ig gg 517 127 227 327 427 527 137 237 i=1,2, .. ., n. The first element
of X, X1, is stored in a memory module
Figure 10.- Column major order located A, memory modules away from

storage of a three-dimensional M, . Thereafter, the elements of X
data set D(I,J,K) = D(5,3,7). are stored in memory modules with suc-
ceeding elements at progressively
higher numbered modules. 1In this case, the memory module address of X._,
obviously, is +

AM(i) = AO + (i - 1) (mod N) (7-1)

In a two-dimensional data set D(I,J), the memory module address AM(i,j)
of the element (assuming column major) is

A (1,5)

it

AM(i) + I(j - 1) (mod N)

i

By + (- 1) +1I( - 1) (mod N) (7-2)
The proof of equation (7-2) is by the observation that the term Ay(i)
is simply the address of X, in a column in D(I,J). For the first column,
the term I(j - 1) = 0 beciuse j = 1. Therefore, Ay(i) can also be inter-
preted as the address of X; in the first column. After X, in the first
column is exhausted, the address of X, 1in the second columii is incremented
by I, which is the column dimensiomn. *In the third column and thereafter, the
address of X, 1is incremented by 2I, 3I, . . ., I(j - 1), in that order.
This concluded the proof.
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In a three-dimensional data set D(I,J,K), the memory module address

AM(i,j,k) of the element X.,.

Ay (i,3,%)

ijk (assuming column major) is

AM(i,j) + IJ(k - 1) (mod N)

il

i

A0 + (i~ 1) +I(G~-1)+ T3k - 1) (mod N) (7-3)

The proof for equation (7-3) is similar to that for equation (7-2). The
term IJ(k - 1) is the increment for the planes. For the first plane,
IJ(k - 1) = 0 because k = 1. Thereafter, the plane is incremented by
I3, 21J, . . ., IJ(k - 1). Referring to figure 10, the following examples
will illustrate the application of equation (7-3).

Example 7-1.

Example 7-2.

The row vector consists of row 2 in plane 1 and row 2 in
plane 2 is (211, 221, 231, 212, 222, 232). 1In figure 10,
the layout of this vector is

0 1 2 3 4 5 6 7 8 9 10

* 232 212 221 * % % 222 231 211 *

To fetch this vector, the offset and the p, and hence m,
are required. These two parameters can be obtained by
calculating AM(Z,l,l) and AM(Z,Z,l) as follows:

A(2,1,1) =8+ (2 -1) +5(1 -1) +5x3(1-1)

1

= 9 (mod 11)

AM(2,2,1) =8+ (2 -1) +5(2 -1)+5x3(1-1)

2

3 (mod 11).

The offset and p are then,

i

offset

A(2,1,1) =9

i

p=lA,2,1,1) - A(2,2,1)]-1 =5

The minus 1 for the p calculation is necessary because
the memory module numbering starts with 0, not 1.

The file vector consists of (531, 532, 533, 534, 535, 536,
537) in figure 10 is

0 1 2 3 4 5 6 7 8 9 10

531 534 537 * 532 535 % * 533 536 *
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The offset and p are:

offset = A(5,3,1)
=8+ (5-1) +5(3 -1)+5x 3(1 -1)
= 0 (mod 11)
p=]0-4,(53,2]-1=5-1=4

The development of the three-dimensional address equation Ay(i,j,k) can
be extended to n dimensions. For notational convenience, let the
n-dimensional address equation be (i1,ip, - . ., iy). The progression of
this development, starting with n =4, is (all equations are modulo N):

A Ur,ig,133,18) = A (i1,ip,13) + T11T3(5y - 1)

i

A U1,10,13,10,15) = A (i1,4p,13,1) + T3T2131,(3is - 1)

n

A.M(il,iz, . e ey in) = AM(il,iz, e e ey in—l) + 1,70 . .. In-l(in -1

Once the offset and the p parameters are obtained, the CU obtains
m from k™ = p (mod N) in some manner, probably by table lookup. The CU
effects this control over the TN and connects the 512 processors to 521 EM
modules in some p-order. From this discussion, it should be clear that a
processor has absolutely no control over its EM module connection. For this
reason, any EM access by a processor must be coordinated with the CU and also
wait for the other 511 processors to come to a stop or a synchronization point
before such an access can be executed. These wait and synchronization events
can cause a degradation in computation performance. There are, however,
exceptions to these restrictions. The discussion on these exceptions, of
course, is beyond the scope of this paper. After the processor-memory connec-—
tion is made by the TN, each processor is responsible for generating the
address A(i,j,k) to access a location within its connected EM module. This
address can be obtained from AM(i,j,k), as follows:

(i,3,5)
A(1,3,k) = '_'A“—ﬁ—*' (7-4)

where | (i,j,k)| denotes the true value of (i,j,k) without the congru-
ence. The following examples will illustrate the application of equa-

tion (7-4).

Example 7-3. In example 7-1, the element 211 is in Mg. Its location
in Mg is

A2,1,1) = {{%} = 0
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The element 211 is in M3. Its location in M3z is

a2, = |f] -1

Example 7-4. In example 7-2, the element 531 is in MO' Its location
in M is

0
- 122 _
A(5,3,1) = .}lj =2

The element 537 is in Mp. 1Its location in My is

(5,3,7)
A(5,3,7) = “ﬁM__JJ _ tl_lzl_ 10

11 11

This completes the discussion on TN programming.
APPLICATION

The primary application of the TN, as mentioned earlier, is for unscram-
bling p-ord:red and pg-ordered vectors. It was shown that these vectors arise
naturally from the storage allocation of three-dimensional data sets. In
practice, these data set sizes for the present Reynolds averaged Navier-Stokes
flow codes are typically (100 x 100 x 100) and (200 x 50 x 100). The compu-
tational methods to solve these equations are often specially split, which
requires that memory accesses must be made in all three directions. In each
of the I, J, and K directions, two memory access patterns are required.
These two patterns are the row access and the column access. This gives a
total of six possible access patterns. Consistent with earlier definitions,
let D(I,J,K) denote the access pattern when computing in the K direction
with column access. Then, with respect to the six possible permutations of
the I, J, and K directional indices, these six access patterns are:

D(I,J,K) K direction, column access
D(J,I,K) K direction, row access
D(I,K,J) J direction, column access
D(K,I,J) J direction, row access
D(J,K,I) I direction, column access
D(K,J,I) I direction, row access

The above six access patterns are also presented in reference 2, appen-
dix A, in a somewhat cryptic manner. In each of these six access patterns,
the TN must be programmed to unscramble p-ordered and pg-ordered vectors and
also, vectors that have memory access conflicts.

The TN can also be programmed to perform a perfect shuffle (ref. 23).
The following description is given without proof. Let X be a l-ordered
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vector of n = 2'Q elements, where & 1is a positive integer. It is assumed
that the elements of X are stored in N memory modules with succeeding
elements at progressively higher numbered modules. To perform a perfect shuf-
fle on X, the TN can be programmed as follows:

1. Treat X as a p-ordered vector. Unscramble X with p = n/2. The
resultant vector is a pq-ordered vector.

2. Shift the pg-ordered vector as many times as necessary to form the
perfect shuffle.

An example for n = 23 and N = 11 is shown in figure 11. 1In this
figure, the TN is set to m = 2, corresponding to p = 4. The unscrambled
vector is a pgq-ordered vector with p =1 and q = 1. If this pgq-ordered
vector is rearranged three more times by appropriate left shifting, the result
obtained is (XgXyX1X5X,X¢X3X7), which is a perfect shuffle of eight elements.

Xg Xq Xy Xg X, Xg Xg X, * % ¢
o [ fe [o Jo [s Jo [ Js Jo [ CONCLESTOR
TN SET
O RESPONDING A tutorial description of the
ToP=4 Burroughs NASF TN has been presented.
O‘P’lg F l4 k is 17 k lg ko Basically, the TN is a bidirectional
ioxa CoX, X, v Xy Xg Xy X programmable combinational logic net-
work that connects a 521-module EM to
Figure 11.- TN used to perform a an array of 512 processors, where 521
perfect shuffle of 8 elements is selected as the smallest prime
by first converting X to a number greater than 512. The TN is
pg-ordered vector. one method of solving the traditional

memory-processor connection problem in
parallel array processors. The primary application of the TN is for unscram-
bling p-ordered and pg-ordered vectors. The TN, if programmed appropriately,
can also be used to perform a perfect shuffle. The advantage of the TN is
simplicity and ease of control. The disadvantage of the TN, in the general
sense, is low performance.

It was shown that p-ordered and pg-ordered vectors arise naturally from
storage allocation of two-, three—, and n-dimensional data sets in the EM of
the FMP, which is similar in architecture to that of the ILLIAC IV array
memory system. If the vector is p-ordered, the TN can unscramble it to a
l-ordered vector in one cycle. If the vector is pg-ordered, or some other
permutation-ordered, several cycles are required for unscrambling. Unlike
other more complicated and powerful permutation networks, the TN cannot, in
gernieral, unscramble non-p-ordered vectors in one cycle. This can be a

disadvantage.

The programming of the TN is relatively simple when compared to the other
permutation networks. This is an advantage. Two programming parameters, the
offset and the shift amount, are controlled by the CU. Since the compiler is
responsible for laying out the data set in EM, the compiler can furnish the
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-information to the CU for calculating these two parameters. In this context,
the CU has absolute control over the TN. For this reason, any EM access by a
processor must be coordinated with the CU and also needs to wait for the other
511 processors to come to a stop or a synchronization point before such an
access can be executed. These wait and synchronization events can degradate
the performance of a computation. This can be a disadvantage.

The design and the implementation of the TN is simple. This is an advan-
tage. The design is based upon the Swanson network (ref. 8). The Swanson
network is a k-apart interconnection network constructed according to the
theory of cyclic groups and the theory of primitive roots. The barrel switch,
it turns out, can be used to implement the Swanson network, and hence the TN.
The implementation consists of a single level of barrel switch plus a fixed
wiring pattern and its inverse. The result is a very simple network.

In the FMP of the NASF, whether or not the TN should be used to solve the
traditional memory-processor connection problem is a matter of complexity
versus flexibility. The TN is simple but inflexible. Other permutation net-
works, such as the Benes network (ref. 4), are somewhat more powerful and
more complex. The research and development of these networks are technically
challenging and also are important in advancing the art of parallel computing.
It is hoped that this effort will be encouraged and continued.
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APPENDIX A
A Method to Compute NK
In general, the computation of Nk, where both k and N are positive
integers, requires k multiplications. The method to be presented, an old
and undocumented method in number theory, requires at most

2 logy (k + 1) =2 [n(k + 1)/8n 2]

multiplications. To compute Nk, express k as an n-bit binary number as
follows:

ko= kg2 + k2l + oL+ k27T (A-1)
where ki =Qorl, i=0,1,2, . . ., n - 1., DNext,
r (o202 . L4 221)
i€ - x n-1
1 n-1
k020 k12 .2
=N N Lyl (A-2)

In equation (A-2), N* can be obtained in n, n << k, multiplications
plus the preparation of a powers-of-2 table, at most n entries. The value
of n can be equated to k by applying the identity

M 1 =20 421 4 4 207! (A-3)

to equation (A-1). 1In equation (A-1), there are at most n terms. The
upper bound for k is

k=2"-1 (A=4)

or

log, (k + 1) (A-5)

Thus, the number of multiplications required to compute Nk is

n

2n = 2log, (k + 1) (A-6)

n multiplications for equation (A-2), and n multiplications for preparing
the powers-of-2 table. This method can be summarized as follows:

1. Prepare a table by computing 22t for i = 0,1,2, . . ., up to about

2. Form the product per equation (A-2) for those terms for which



Example 1. Compute 220

4 3 2 1 0
1. 20=1 0 1 O O

i lo 1 2 3 4
2212 4 16 256 65536
i 2
2. 220 = 227 22" = 65536 x 16 = 1,048,576

Example 2. Show that 2260

1 modulo 521

8 7 6 5 4 3 2 1 0
1. 260=1 0 0 0 0 0 1 0 O
i | 0 1 2 3 4 5 6 7 8
22119 4 16 256 411 117 143 130 228
(mod 521)

2
2. 2260 = 22 92" - 998 x 16 = 3648

3648 = 1 modulo 521
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